<em id="i00t0"><strike id="i00t0"></strike></em><mark id="i00t0"><output id="i00t0"><button id="i00t0"></button></output></mark>
  • <strong id="i00t0"></strong><span id="i00t0"><sup id="i00t0"></sup></span>

    1. <optgroup id="i00t0"><em id="i00t0"><del id="i00t0"></del></em></optgroup>

      Isomorphism in wavelets

      來源:?黨委研究生工作部、數理學院發布時間:2019-05-20

      【講座題目】Isomorphism in wavelets

      【講座時間】2019年5月22日(星期三)15:00-16:00

      【講座地點】北京校部主樓C636

      【主 講 人】戴興德 教授

      【主講人簡介】

      戴興德,美國德克薩斯A&M大學獲得博士學位,現為美國北卡羅來納夏洛特分校終身教授。戴教授是國際著名的泛函分析與小波分析專家,他和導師D. Larson教授于上世紀90年代成功地將泛函分析算子代數與調和分析框架小波理論相結合,開創了這兩個領域交叉研究的新方向,該理論具有著廣泛的理論和應用價值,是國際研究的熱點領域,被國際上稱為Dai-Larson理論。戴教授的開創性的研究成果(高倍引論文)為 Wandering vectors for unitary systems and orthogonal wavelets (Mem. Amer. Math. Soc.134 (1998), no. 640, viii+68 pp);  Wavelet sets in Rn ( J. Fourier Anal. Appl.3 (1997), no. 4, 451–456);  Wavelet sets in rn II (Amer. Math. Soc., Providence, RI, 1998) 。

      【內容簡介】

      Two scaling functions and for Parseval frame wavelets are algebraically isomorphic,  , if they have matching solutions to their (reduced) isomorphic systems of equations.

      Let A and B be d×d and s×s dyadic expansive integral matrices with d, s≥1  respectively and let   be a scaling function associated with matrix A and generated by a finite solution. Then there always exists a scaling function   associated with matrix B such that    is algebraically isomorphic to  .

      An example shows that the assumption on the finiteness of the solutions can not be removed.


      返回
      av视频